我,一个数据科学家的三大弱点
|
深度学习里有很多不同的分支领域,非常难分辨哪个方法和库将最后胜出。虽然如此,我认为熟悉深度学习某一个领域并能实现其中某些技术,会让一个人能够解决问题的范围更广。解决问题驱使我更深入学习数据科学,所以把深度学习加入我的技能库是一项有价值的投资。 我对于深度学习的学习计划和当初把自己变成数据科学家的方法一样:
当我学习一个技术课题时,一个有效的方法是边学边做。这意味起步时不是通过基础理论而是通过找到实际应用方法去解决问题。这个自上而下的方法意味着我要把许多精力放在着重于动手带有许多代码样例的工具书上。在我明白技术的实际应用以后,我再回到基础理论中,这样,我能够更高效的使用这些技术。 虽然没有机会在工作中学习到其他人的神经网络,要靠自己自学,但是在数据科学领域有着丰富的资源和广阔的社区。对于深度学习,我最初依赖这三部书:
前两本书着重于通过神经网络实现解决方案,而第三本更偏向深入理论。只要情况允许,可以边读边在键盘上敲代码,这会将读技术文章变为有趣的体验。前两本书中的代码示例非常棒:我通常是在Jupiter Notebook中逐行敲写和运行,探究代码如何工作,并记录知识细节。 此外,我不仅仅是复制这些代码,而是尝试在自己的项目中实践它们。我在近期工作的一个实践项目是构建一个图书推荐系统,该系统是根据《Deep Learning Cookbook》中的类似示例代码改编的。从头开始创建自己的项目可能令人生畏,如果你想提升自己,可以从别人的轮子上搭起。 最后,学习某个主题的最有效方法之一是把这个知识教给别人。从经验来看,如果我不能用简单的语句解释给别人,那么我就还没有完全理解这个知识。随着学习深度学习的每个主题,我将保持写作,并分析技术实现细节和概念性解释。 教学是最好的学习方式之一,我计划将其作为学习深度学习的一项重要组成部分。
学习金字塔。左侧:平均掌握程度;右侧:讲义、阅读、音视频资料、示例、讨论、实践联系、教导其他人 总结 (编辑:淮安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |

